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DESIGN PROBLEMS FOR A ONE-STAGE SPACE T"SPORTER 
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It i s  expected t h a t  t h e  present  booster-rockets 

used f o r  t h e  launching of o r b i t a l  payloads w i l l  be 
replaced by recoverable space-transporters,  i n  order  
t o  keep t h e  cos t  of t h e  expanding spacef l igh t  progrm's 
within economical l i m i t s .  

of d i f f e r e n t  proposals has been made with t h e  common 
aim of providing a method f o r  launching payloads i n t o  
o r b i t  more economically than with booster  rockets.  
These proposals include s ingle  and mul t i s tage  systems. 
A so lu t ion  of spec ia l  t echnica l  elegance i s  a one-stage 
space-transporter capable of pu t t ing  payloads i n t o  low 
ea r th -o rb i t s  and re turn ing  t o  i t s  base similar t o  an 
airplane.  S t u d i e s  made i n  connection with t h e  National 
Space Program, Research Pro jec t  623 (space-transporter)  , 
have indicated t h a t ,  wi th  proper s e l ec t ion  of t h e  climb 
path, winged space- t ransporters  using launching a i d s  
may pt  a r e l a t i v e l y h i g h  percentage of t h e  s t a r t i n g  
weight i n t o  o r b i t .  Requirements w i th  respec t  t o  t h e  
mass r a t i o  can be rea l ized ,  i f  s t r u c t u r a l  weights per 
 unit^ area and wing s i z e s  can be kept  within c e r t a i n  
l i m i t s  . 

I n  severa l  countr ies ,  including Germany, a v a r i e t y  

~ 
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I n  the,<*&w years  s ince t h e  launching of t h e  f i rs t  satel l i te  t h e  
tasks fac ing  *$aceflight programs and, therefore ,  t h e  requirements on 
che carryihg'systems have grown i n  an extraordinary fashion. Both t h e  
Jnited S t a t e s  'and Pussia have launched a r t i f i c i a l  satell i tes and space 
feh ic les  with rockets  whose o r i g i n  l i e s  p a r t l y  i n  t h e  m i l i t a r y  a rsena ls  
if t h e  respect ive countr ies  and p a r t l y  ( p a r t i c u l a r l y  those t o  be used i. 
Future assignments) i n  spec ia l  developments f o r  space t r a v e l  purposes. 
[n cases when t h e  payload i s  t o  be returned t o  ear th ,  use i s  made of 
i a l l i s t i c  capsules resembling m i l i t a r y  warheads i n  t h e i r  function. Thu 
it chn be seen t h a t  t h e  technology employed f o r  t he  carrying and r e e n t r ,  
systems i s  c lose ly  related t o  the  methods developed for m i l i t a r y  pur- 
loses. 
in t h e  time pressure or ig ina t ing  from t h e  competition between the  Unite( 
X a t e s  and R u s s i a .  

The reasons for t h i s  can be found i n  t h e  r e s u l t a n t  economy and 
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erospace plane (Figure 6). 
hich ind ica t e  that  these  p ro jec t s  are i n  t h e  i n i t i a l  s tages  of study 

The proposed p ro jec t s  vary between extremes 

kapable of rendezvous maneuvers f o r  assembling l a rge  loads i n  space. AI-g&, I I foTtXTe same r e a s ~ s ~ - ~ - - ~ ~ - ~ e s i r a b l e  t h a t  t h e  space-transporter be manned. 
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Figure 5. 
Transporter Powered wi th  02/H2 (Ref .  6). 

The Astro Concept of a Two-Stage Space 

I n  Germany, a number of p r i v a t e  firms are engaged i n  space- 
t ranspor te r  p ro jec t s .  The versions under inves t iga t ion  include one- a n  
two-stage systems which can be launched from v e r t i c a l  or hor i zon ta l  pos 
t ions.  A t  t h e  present  t i m e ,  t h e  Junkers Company i s  considering a ho r i -  
zonta l ly  launched one-stage space-transporter which employs an a u x i l i a r  
Launching system (Figure 7). The a u x i l i a r y  launcher could cons is t ,  f o r  
zxample, of a steam catapul t .  

I 

I n  t h e  following paragraphs some of t h e  problems encountered i n  t h  
levelopment of a one-stage space-transporter are discussed. The c r a f t  
i s  capable of de l ive r ing  payloads i n t o  a 300-km c i r c u l a r  o r b i t .  

The c h a r a c t e r i s t i c  climb ve loc i ty  m u s t  be  determined first.  From 
that,  t h e  percentage of t he  launching weight i s  calculated by assuming 
s s p e c i f i c  impulse. Then, conclusions regarding admissible s p e c i f i c  
s t r u c t u r a l  weights and t h e  s i z e  of t h e  payload can be drawn. I n  p a r t i c  
lar, it w i l l  be poss ib le  t o  answer t h e  important question of whether a 
horizontal  o r  v e r t i c a l  launching i s  more favorable as regards t h e  energ 
required. j- 

Since computer programs f o r  t h e  ana lys i s  of climb paths, i n  which 
the air  r e s i s t ance  and l i f t  are taken i n t o  account, have not  been ava i l  
sb le  i n  t h e  pas t ,  t h e  escape v e l o c i t i e s  of t h e  various climb paths had 



Figure 6. Typical Aerospace Plane Design. 

Figure 7. Single-Stage Rocket Propelled Space-Transporter. 

the 
/accelerating force, mb; the,part of the total load carried by the jet 

2 
inus the centrifugal force, m(g - V /R) sin a; the part of the total 

2 + eight carried by lift minus the centrifugal force m(g - V /R)- E 'cos a; 
he zero resistance Wo, and the thrust w(dm/dt). The summation of the 

resulis in: 



Jhere (90 - a)  i s  t h e  angle between t h e  ve loc i ty  of f l i g h t  and g r a v i t y  
vectors, i s  t h e  r a t i o  of  t h e  l i f t -dependent  a i r  r e s i s t ance  t o  l i f t ,  
3nd w i s  t h e  j e t  ve loc i ty .  To ca r ry  out  t h e  in t eg ra t ion  over a time 
in t e rva l ,  it w a s  assumed t h a t  t h e  angle a i s  constant within t h e  atmos- 
phere up t o  an a l t i t u d e  of 50 km, and t h a t  t h e  acce lera t ion  b i s  
constant. 
vector. 

"wo 

was assumed t o  be given by t h e  approximation 

The j e t  ve loc i ty  vector coincides wi th  t h e  vehicle ve loc i ty  
I n  addi t ion ,  t h e  r a t i o  e+ and t h e  zero r e s i s t ance  coe f f i c i en t  

had t o  be assumed constant. The v a r i a t i o n  i n  atmospheric dens i ty  

where H i s  t h e  a l t i t u d e  i n  meters. 

It i s  obvious t h a t  these  assumptions only very roughly correspond 
to t h e  a c t u a l  case. Consequently, t h e  results obtained by means of t h e  
approximations should be viewed only as relat ive va lues  while t h e  
absolute values are y e t  t o  be determined by exact methods. Nevertheles 
as demonstrated i n  t h e  following paragraphs, some of t h e  results obtain1 
by t h e  approximate method show su rp r i s ing ly  good agreement wi th  values 
which have appeared i n  American publications.  

When t h e  assumptions l i s t e d  above are subs t i t u t ed  i n t o  Equation (i 
Equation (2), shown i n  Figure 8, resul ts  after some transformations. 
This equation i s  used f o r  t h e  f l i g h t  i n  t h e  atmosphere. 

For a l t i t u d e s  beyond t h e  atmosphere (i.e.,  f o r  a l t i t u d e s  g r e a t e r  
than 70 km), a b i e l l i p t i c a l  t r a n s i t i o n  w a s  employed (Figure 8). 
found t h a t  f o r  t h e  e n t i r e  region of o r b i t a l  pa ths  under consideration, 
t he  apogee of t h e  f i r s t  e l l i p s e  i s  below 300 km. Thus, t h e  propulsion 
was assumed shutoff a t  an a l t i t u d e  of 50 km and t h e  f l i g h t  w a s  assumed 
t o  continue without propulsion t o  t h e  apogee of t h e  e l l i p t i c a l  o r b i t .  
It w a s  f u r t h e r  assumed t h a t  upon reaching t h e  apogee, an impulse i s  
produced which acce le ra t e s  t h e  space-transporter i n t o  t h e  f i n a l  des i red  
e l l i p t i c a l  o r b i t  with a 300-km apogee. There, a second o r b i t a l  ve loc i t ;  
producing impulse w a s  assumed t o  be given. 

It w a s  

The method described above w a s  used t o  perform ca lcu la t ions  for 
various r a t i o s  E +  wi th  various acce lera t ions  over a range of climb 
angles. The resul t  of t hese  ca l cu la t ions  i s  shown i n  Figure 9. When 
examining t h i s  diagram, it should be kept i n  mind t h a t  t hese  results 
have been obtained by applying simplifying assumptions and, therefore ,  
t he  s i g n i f i c a n t  resul t  i s  t h e  t rend  shown r a t h e r  than t h e  absolute valul 
involved. The diagram contains t h r e e  s e t s  of curves denoted by d i f f e r e  
l i n e s .  Each set c o n s i s t s  of t h ree  curves which are va l id  f o r  t h e  range 
o f  climb angles varying between 5' and 60°. The curves are discontinue( --- 

___I 
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a-b: C l i m b  path f o r  a f ixed  angle (Equa- 

b-e: F ree - f l i gh t  b a l l i s t i c  pa th  
t i o n  2, Impulse I) 

e: Impulse I1 given f o r  t r a n s i t i o n  from 
e l l i p s e  I t o  e l l i p s e  I1 

d: Impulse I11 given f o r  t r a n s i t i o n  
from e l l i p s e  I1 t o  c i r c u l a r  o r b i t a l  
path 

1 

, 
k: Ear th  contour 
0 :  Circular  o r b i t a l  path Equation 2: 

in$ .[-+tb*#r 

Figure 8. I n t r i n s i c  B i e l l i p t i c a l  F l i g h t  Path Trans i t i on  

Angle of C l i m b  

Figure 9. Escape Velocity vs. Percentage of t h e  S t a r t i n g  Weight 
Placed i n  Orbit .  
t o  t h e  climb path.) 

(See text ~ ~_ f o r  assumptions made with re ference  

I a t  t h e  60° angle because, for s t eepe r  angles, t h e  approximate methods 
fu rn i sh  r e s u l t s  which devia te  g r e a t l y  from t h e  a c t u a l  case. However, 
d a t a  taken from American sources (Ref .  4) are shown i n  t h e  diagram and 
p,re seen t o  f i t  i n t o  t h e  p i c tu re  r a t h e r  w e l l .  The constant angles of 
:climb shown i n  Figure 9 should be regarded as t h e  average values of t h e  
va r i ab le  angles of climb which occur i n  t h e  a c t u a l  case. 

-- 

Each s e t  of curves i s  va l id  for constant acce lera t ions  of 1, 2, and 
3 g respec t ive ly ,  as shown by t h e  legend; t h e  curves are va l id  up t o  a 
PO-km a l t i t u d e .  I n  each case, t h e  lowest curve i s  va l id  f o r  t h e  case 

he middle curve f o r  e +  = 0.167, and t h e  ermost curve f o r  
. . . ... .. ..-. . . . . . . . x-_ -- 

I 
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e +  = 0. 
upper boundary, and t h e  values of e+ between 0.25 and 0.167 can, i n  a l l  
probabi l i ty ,  be r ea l i zed  i n  t h e  super  and hypersonic regions. Thus, i n  
each case, t h e  reg ion  of p a r t i c u l a r  i n t e r e s t  i s  between t h e  two la t te r  
curves. A s  w a s  mentioned earlier, t h e  acce le ra t ion  w i l l  hardly be con- 
s t a n t  during an a c t u a l  f l i g h t .  However, t h e  constant acce lera t ion  used i 

i n  t h e  ca l cu la t ions  f o r  reasons of s impl i c i ty  can be viewed as t h e  aver- 
age value of acce lera t ions  produced by constant t h r u s t .  For example, a 
constant acce lera t ion  of 1 g can be regarded as t h e  average value f o r  a 
constant t h r u s t  which produces an i n i t i a l  acce le ra t ion  of around 0.3 g 
and a f i n a l  acce le ra t ion  of 2 t o  3 g. Correspondingly, one could regard 
a constant acce le ra t ion  of 3 g as roughly equivalent t o  a constar,t t h r u s t  
producing an i n i t i a l  acce le ra t ion  of arcjund 1 g and a f i n a l  acce le ra t ion  
of 8 t o  10 g. The above f i g u r e s  should be viewed as being ind ica t ive  of 
t h e  poss ib le  range r a t h e r  than  as r i g i d l y  f ixed  cor re la t ions .  

The uppermost curve corresponds t o  t h e  

I n  examining Figure 9 ,  it should be recognized t h a t  f o r  climb angles /110 
g r e a t e r  than 10' t o  l?', higher acce lera t ions  w i l l  lead t o  a percentage 
of higher o r b i t a l  masses and are the re fo re  favorable. This follows from 
t h e  f a c t  t h a t  higher acce lera t ions  w i l l  cause a decrease i n  t h e  climb 
dura t ion  time with a corresponding decrease i n  t h e  g r a v i t a t i o n a l  e f f ec t s .  
The e f f e c t  of t h e  increased a i r  r e s i s t ance  r e s u l t i n g  from an increase  i n  
acce le ra t ion  i s  smaller than  t h e  e f f e c t  of g r a v i t a t i o n a l  fo rces  i n  t h e  
region under consideration. 
gain i n  o r b i t a l  mass r e s u l t i n g  from r a i s i n g  t h e  average acce le ra t ion  f r o  
2 t o  3 g i s  r a t h e r  s m a l l  i n  t h i s  region. Therefore, it should be a n t i c i  
pated t h a t  f o r  s t i l l  higher acce lera t ions  t h e  e f f e c t  of t h e  increased a i  
r e s i s t ance  w i l l  cause a f u r t h e r  decrease i n  t h e  o r b i t a l  mass. 

On t h e  o the r  hand, it can be seen t h a t  t h e  

This  e f f e c t  can be recognized i n  t h e  case of small climb angles. 
The curves for 2- and 3-g acce lera t ions  i n t e r s e c t  i n  t h e  neighborhood of 
t h e  5 O  angle, which ind ica t e s  t h a t  t h e  e f f e c t  of a i r  r e s i s t ance  begins t 
predominate. 
t h e  zero r e s i s t ance  case) t h e  curves corresponding t o  1 g and 2 g acce l -  
e r a t i o n s  already i n t e r s e c t  i n  the  v i c i n i t y  of a loo angle. 
may be added here t h a t  t h e  curves obtained by t h e  Junkers Company appear 
-Lo be i n  good agreement with t h e  American d a t a  (Ref .  4) given f o r  
vertically-launched spacecraft .  If one supposes t h a t  t h e  American de- 
v i ces  were launched a t  an i n i t i a l  acce le ra t ion  of about 3 g which, as 
mentioned earlier, corresponds t o  our curves f o r  1-g constant accelera- 
t i o n ,  then  t h e  American d a t a  would f a l l  on t h e  extension of t h e  1-g con- 
s t a n t  acce le ra t ion  curves. 
shown i n  Figure 9 are representa t ive  not only wi th  regard t o  t h e i r  gen- 
eral shape, but a l s o  with regard t o  t h e i r  values. 
p resent ly  being inves t iga ted .  

It i s  a l s o  i n t e r e s t i n g  t o  note t h a t  f o r  E +  = 0 (i.e., for 

Perhaps it 

As  a result ,  it i s  hoped t h a t  t h e  curves 

This supposit ion i s  

Having considered t h e  re la t ive pos i t ions  of t h e  curves with respec t  
&t i t o  one another, we s h a l l  t u r n  our a t t e n t i o n  t o  t h e i r  genera l  fo-e, 
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seen t h a t  a l l  of t h e  curves a r e  r e l a t i v e l y  f l a t  i n  t h e  i n t e r v a l  from 30' 
t o  60°. A t  t h e  angle of 30°, a l a r g e r  p a r t  of t h e  weight i s  ca r r i ed  by 
lift than  a t  t h e  angle of 600; on t h e  o the r  hand, t h e  dura t ion  of climb 
and t h e  a i r  r e s i s t a n c e  are g r e a t e r  a t  t h e  shallower angle of climb. 
These e f f e c t s  are of about t h e  same order of magnitude i n  t h e  region be- 
tween 30° and 600 and tend t o  balance each o ther .  The weight begins t o  
be ca r r i ed  predominantly by l i f t  r a t h e r  than  by t h r u s t  only a t  angles 
smaller than 30°, i n  s p i t e  of t h e  increased a i r  r e s i s t ance  and dura t ion  
time, w i th  t h e  n e t  e f f e c t  of a considerable ga in  i n  percentage o r b i t a l  
mass. However, a t  very s m a l l  angles t h i s  advantage i s  again l o s t  because 
of t h e  increased dura t ion  time and a i r  r e s i s t ance  e f f e c t s ,  and t h e  per- 
centage o r b i t a l  weight becomes smaller. The m a x i m a  ( i . e . ,  t h e  po in t s  of  
maximum percentage o r b i t a l  weight) a r e  seen t o  s h i f t  wi th  increas ing  e +  

i n  t h e  d i r e c t i o n  of t h e  increas ing  angle of climb f o r  each group of  con- 
s t a n t  acce le ra t ion  curves. This e f f e c t  can be explained simply by noting 
t h a t  t h e  a i r  r e s i s t ance  s i g n i f i c a n t l y  increases  wi th  increasing a+. 
t h e  o the r  hand, t h e  e f f e c t s  of a i r  r e s i s t ance  increase  with t h e  angle of 
climb, t hus  s h i f t i n g  t h e  optimum t o  t h e  r i g h t .  The con t ro l  ca l cu la t ions  
for €4- = 1.0, which have not been shown i n  t h e  diagram f o r  reasons of 
c l a r i t y ,  i nd ica t e  t h a t  t h e  optimum poin t  f o r  higher values  of  e+ moves 
r ap id ly  toward t h e  s t eep  climb angles so t h a t  for 4- = 1.0 t h e  optimum i s  
i n  t h e  area of t h e  60° angle. 

On 

The c h a r a c t e r i s t i c  escape ve loc i ty  f o r  each angle of climb can be 
The f r a c t i o n  of t h e  obtained from Figure 9 for each f u e l  combination. 

s t a r t i n g  weight brought i n t o  o r b i t  can be ca lcu la ted  for any s p e c i f i c  i m  
p u l s e  with t h e  fundamental rocket equation. 

The ord ina te  sca l e  used i n  Figure 9 corresponds t o  a s p e c i f i c  i m -  
pu lse  of 430 see; an a t t a i n a b l e  value wi th  an 02/H2 f u e l  combination, i f  

a high-pressure power p l an t  i s  used. However, an inves t iga t ion  of t h e  
e f f e c t  of f u e l  mixture r a t i o s  on t h e  s i z e  of t h e  space-transporter and on 
t h e  c o s t  per kilogram of payload has indicated t h a t  t h e  most favorable  
f u e l  mixture r a t i o  for t h e  02/H2 combination i s  about 7:l. 

confirmed by o ther  sources (Ref .  4). 
t h e  value se lec ted  as t h e  s p e c i f i c  mean impulse appears t o  be somewhat 
high. 
be a t t a ined  by t h e  end of t h i s  decade) would make t h e  percentage o r b i t a l  

e i g h t  smaller by about 1 percent.  However, t h i s  loss can be compensate 
r by employing a ca t apu l t  launching aid,  i n  which case t h e  values give 
Figure 9 can be taken as r ep resen ta t ive  f o r  a space-transporter which 

This i s  a l s o  

For t h i s  p a r t i c u l a r  mixture r a t i o ,  

Reducing t h e  s p e c i f i c  mean impulse t o  410 see ( t h i s  value should 

s launched with t h e  a id  of a ca t apu l t  and i s  powered by t h e  02/H2 f u e l  

combination i n  a 7:l mixture r a t i o .  It should be f u r t h e r  mentioned t h a t  
t h e  bene f i c i a l  e f f e c t  of t h e  e a r t h ' s  r o t a t i o n  on t h e  escape ve loc i ty  had 
not been taken i n t o  consideration i curves. Thus, t h e  
d a t a  shown represent  a polar  o r b i t  X ^  x x 
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Its  of t h e  inves t iga t ion  of t h e  e f f e c t s  of acce le ra t ion  and 
of t h e  angle of climb on t h e  percentage o r b i t a l  weight show t h a t  t h e  
start from a hor izonta l  pos i t ion  accompanied by a r e l a t i v e l y  shallow 
angle of ascent i s  more favorable than  a v e r t i c a l  s tart  f o r  a vehicle 
whose configuration i s  such t h a t  t h e  aerodynamic l i f t  produced i s  g r e a t e r  
than t h e  a i r  r e s i s t ance .  The data,  taken from American sources, which 
demonstrate t h a t  t h e  percentage o r b i t a l  mass increases  from about 11 per- 
cent f o r  a v e r t i c a l  start t o  over 12  percent f o r  a hor izonta l  one are of 
g r e a t  s ign i f icance  if  one considers t h a t  t h e  payload c o n s t i t u t e s  a m a x i -  
mum of 1 percent of t h e  s t a r t i n g  weight. 

i 

If it i s  postulated t h a t  t h e  a i r  frame c o n s t i t u t e s  t h e  same f r a c t i o n  
of t h e  t o t a l  weight f o r  both poss ib le  launching pos i t i ons  and t h a t  t h e  
required proportions can be a t t a ined  a t  a l l ,  then, i n  s e l ec t ing  t h e  climb 
path, it i s  no longer a question of t h e  s i z e  of t h e  payload, b u t  a ques- 
t i o n  of  whether t h e  payload can be  car r ied  a t  a l l .  It i s  known t h a t  per- 
centage o r b i t a l  masses i n  excess of 13 percent are a t t a i n a b l e  wi th  a con- 
s t a n t  acce le ra t ion  of  3 g (involving an escape ve loc i ty  smaller than 
8600 m/sec). These f i g u r e s ' a r e  s t i l l  t o  be confirmed by exact calcula- 
t i o n s  and it i s  s t i l l  t o  be found whether t h e  demands on o r b i t a l  paths 
corresponding t o  t h i s  average acce le ra t ion  can be m e t .  

The following d iscuss ion  i s  concerned with t h e  s p e c i f i c  case of an 
escape ve loc i ty  of 8860 m/sec and a percentage o r b i t a l  mass of 12.2 per-!  
cent (a f u e l  percentage of 87.8 percent) which, according to Figure 9,  i s  
a f u l l y  a t t a i n a b l e  value. 
ages of 88 percent for t h e  f i rs t  s tage  and 86 percent f o r  t h e  second 

One can compare these  with t h e  f u e l  percent- 

s tage  c i t ed  i n  reference 4, i n  connection wi th- the  Douglas p ro jec t  ASTRC 
For a second considered f u e l  combination, we take  F & J $ I &  i n  a mixture 

r a t i o  2.2:1, a ca lcu la ted  ve loc i ty  of j e t  of 3950 m/sec corresponding t o  
a s p e c i f i c  impulse of 403 see from which t h e  percentage o r b i t a l  mass i s  
calculated a t  10.6 percent f o r  t h e  escape ve loc i ty  of 8860 m/sec. The 
f u e l  percentage for t h i s  case i s  seen t o  be higher and t h i s  f a c t  makes 
t h e  f u e l  combination F2/N$4 appear, a t  f i rs t  glance, unfavorable. How- 

ever, i n  t h e  following d iscuss ion  it w i l l  be  shown t h a t  t h i s  disadvantag 
i s  more than o f f s e t  by t h e  higher dens i ty  of F2/R$I4. 

Figures 10 and 11 have been se lec ted  from among a number of similar 
diagrams. 
t h e  two f u e l  combinations 02/H2 and F2/N2H4 and, therefore ,  t h e  percent- 

age o r b i t a l  masses of 12.2 percent and 10.6 percent respec t ive ly .  The 
Problem i s  reduced t o  t h e  i n t e r p r e t a t i o n  of geometrical r e l a t ionsh ips .  
The s t r u c t u r e  of t h e  diagrams i s  explained i n  Figure 10 ( the  02/H2 case) 

The diagram r e l a t e s  t h e  s t a r t i n g  weight Go t o  t h e  load per surface area, 

They represent  a survey of admissible s t r u c t u r a l  weights f o r  
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Figure 10. Space-Transporter (02/H2) S t a r t i n g  Weight as a Function ~ 

of Surface Loading p f o r  Various Spec i f ic  S t r u c t u r a l  Weights of t h e  : 
Fuselage (b') and L i f t i n g  Surfaces (b) .  i . 

.._Î _..-.._.__ ~ 1 

D r a g  Length of Fuel Tank 
L r  = 14.3 km 
. _ _ _ _ _  ...... l...l . . . . . . . . I . .  . ... .. . . . .....-.....-1.-.. " ............... ,... ".~." .... ~,~ 
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Figure 11. Space-Transporter (F2/N*H4) S t a r t i n g  Weight as a Function 

of Surface Loading p for Various Spec i f ic  S t r u c t u r a l  Weights of t h e  
Fuselage ( b ' )  and L i f t i ng  Surfaces (b).  

1 
1 

! 
i :  

Drag Length of Fuel Tank 
Lr = 14.3 km i 

i l  

The values  of Go, given by t h e  inner  sca le ,  are p lo t t ed  1 I - I -^ 
;P, a t  landing. 

1 as ord ina tes  with t h e  values  of P given by absc issas .  
a r e  t h e  equivalent s ca l e s  co r re l a t ing  t h e  o r b i t a l  weight wi th  t h e  landing 
speed. The curves drawn with various dashed l i n e s  represent  f ixed combi- 
na t ions  of s t r u c t u r a l  weights used f o r  t h e  fuselage b '  and t h e  wetted 
surface of t h e  weight carrying sur faces  including t h e  surface b of t h e  

The ou te r  s ca l e s  

- ~-~ _-- .--- .. - .._.. . 



underside of fuselage.  The drag length  o container -is as 
t o  be 14.3 km, and t h e  f u e l  tank i s  assumed t o  be i n  t h e  shape of a c i r -  
cu la r  cy l inder  with a lengthldiameter r a t i o  of 8.5. 
diagrams contain curves of t h e  so-called constant supplementary areas; 
i.e., t h e  percentage cont r ibu t ion  of t h e  sweptback wings i n  comparison 
with t h e  t o t a l  a rea  of t h e  carrying surface. The remainder of t h e  ca r ry  
ing sur face  i s  provided by t h e  fuselage underside. 

Furthermore, t h e  
I 

j 

> 

I n  ca l cu la t ing  t h e  s t a r t i n g  weight Go, t h e  following f ixed  weights 
( i n  met r ic  tons)  were assumed : 

Rocket engines % = 0.051 GO2/3,  

Landing gear 

E l e c t r i c  and hydraulic p l an t s  

c;, = 0.017 k, 
GA = 0.015 k, 

where Go i s  t h e  s t a r t i n g  weight and % i s  t h e  weight placed i n t o  o r b i t ,  
and : 

% = 0.9, Cabin 

Gg = 0.3, C r e w  

Elec t ronic  equipment GE = 0.3, 

Payload % = 0.5. 

The pure payload (i.e., t h e  weight which i s  e i t h e r  placed i n t o  o r b i t  o r  
brought back t o  e a r t h )  w a s  assumed as 500 kg i n  t h e  ca lcu la t ions .  
r e l a t i v e l y  low payload can be explained by t h e  f a c t  t h a t  t h e  des i red  max 
mum s t a r t i n g  weight w a s ,  a t  f irst ,  determined t o  be 100 tons. Investiga 
t i o n s  involving l a r g e r  payloads have indicated t h a t  t h e  s t a r t i n g  load 
does no t  increase  i n  proportion wi th  t h e  payload. This po in t  w i l l  be 
considered i n  de t a i l  l a t e r  on. 

The 

To begin with, Figure 10 shows t h a t  t h e  shape of  a l l  curves repre- 
sen t ing  fixed combinations of s p e c i f i c  s t r u c t u r a l  weights has a hyper- 
b o l i c  character;  i.e., t h e r e  are regions i n  which t h e  curves a r e  rela- 
t i v e l y  f l a t  and regions i n  which t h e  curves rise steeply.  I n  cases wher 
$he cont r ibu t ion  of t h e  supplementary l i f t i n g  sur faces  i s  l a r g e  (see the  
60 percent curve), t h e  s t a r t i n g  weight increases  rapidly.  This i s  be- 
cause of  t h e  increase  i n  t h e  required flexural r i g i d i t y  of t h e  tank as 
t h e  tank increases  i n  s i ze .  
r e l a t e d  t o  t h e  length/diameter r a t i o  of t h e  tank. 
forms, t h i s  rapid r ise t akes  p lace  a t  g r e a t e r  values of t h e  s t a r t i n g  
weight. 
when a c e r t a i n  d e f i n i t e  payload weight i s  exceeded, as w i l l  be shown l a t  

l 

~ - -*I 
These s t i f f n e s s  requirements are obviously 

For more compact tank 

A similar r ap id ly  r i s i n g  curve w i l l ,  inc identa l ly ,  be obtained 

j112 
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It i s  of p a r t i c u l a r  imp e to li of t h e  supplemen- 
t a r y  l i f t i n g  sur faces  to t h e  absolute minimum necessary t o  ensure stabil- 
i t y  and s t e e r a b i l i t y .  
no problems during launching and landing operations.  
s p e c i f i c  s t r u c t u r a l  weights should, qu i t e  na tu ra l ly ,  be kept low; how- 
ever, it should be noted t h a t  t h e  s p e c i f i c  s t r u c t u r a l  weights f o r  t h e  

supplementary l i f t i n g  areas are given i n  terms of weight (kg/m ) per  
wetted surface,  which means that these  values w i l l  double when projected 
areas a r e  considered. When it i s  considered t h a t  t h e  space-transporter 
i s  not  required t o  perform maneuvers producing mul t ip le  loadings of high 
in t ens i ty ,  t h e r e  i s  hope t h a t  t h e  requirements wi th  respec t  to t h e  spe- 
c i f i c  s t r u c t u r a l  weights can be m e t .  S t r u c t u r a l  ana lys i s  of t h e  tanks 
has produced weights which a re  compatible wi th  t h e  previous remarks. 
S t r u c t u r a l  ana lys i s  and weight estimates are p resen t ly  being prepared. 
For t h e  fuselage, t h e  s i t u a t i o n  i s  q u i t e  similar. I n  t h i s  case, however, ~ 

it i s  assumed t h a t  t h e  body i s  self-supporting so t h a t  t h e  sk in  of t h e  
fuse lage  serves p r i n c i p a l l y  as a pro tec t ive  coating aga ins t  t h e  aerody- 
namically generated high temperatures. 

A s m a l l  s i z e  of t h e  supplementary sur faces  causes 
The admissible 

2 

I 

The several regions shown i n  Figure 10 are: t h e  poss ib le  reg ion  
which covers p r a c t i c a l l y  the e n t i r e  range of parameters used i n  t h i s  
ana lys i s ,  but which i s  bounded on t h e  top  by t h e  s t a r t i n g  weight of 150' 
tons;  t h e  probable region i n  which t h e  estimates cancel each other;  t h e  
d e s i r a b l e  region (i.e., t h e  region to be s t r i v e d  f o r ,  which i s  bounded o 
t h e  top  by what appears t o  be t h e  des i r ab le  s t a r t i n g  weight of 100 tons; 
and f i n a l l y ,  t h e  reg ion  i n  which t h e  r e s u l t s  can be viewed as a super- 
pos i t i on  of a l l  t h e  o ther  regions and i n  which t h e  f i r s t  i n t e r p r e t a t i o n  
should be made. The middle poin t  of t h e  reg ion  of f i rs t  i n t e r p r e t a t i o n  
corresponds t o  t h e  following: 

S t a r t i n g  weight 85 tons  

Percentage cont r ibu t ion  of t h e  supplementary 
l i f t i n g  sur faces  30 percent 

Spec i f i c  s t r u c t u r a l  weight of t h e  fuselage,  b '  

Spec i f ic  s t r u c t u r a l  weight of t h e  l i f t i n g  surface, b 

10 kg/rn2 

12.75 kg/m2 

Landing speed 275 b / h r  

Figure 11 shows similar resul ts  f o r  t h e  same range of s p e c i f i c  
e ights ,  b u t  f o r  t h e  f u e l  combination F2/Np4 wi th  a 2.2:l mixture r a t i c  

Again t h e  r e s u l t i n g  curves are seen t o  resemble hyperbolas. It i s  note- 
worthy t h a t ,  i n  t h i s  case, t h e  curves have moved c lose r  toge ther  ( s ign i -  

f e e t  of t h e  s p e c i f i c  str ghts  i s  of somewhat 
I ^-- ~ - - ~  -.----.-- t h a t  

> 

t 
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lesser importance), and t h a t  t h e  curves have a l s o  sh i f t ed  i n  t h e  d i r ec -  
t i o n  of t h e  lower surface loadings. Both of t hese  phenomena a r e  t h e  con- 
sequence of t h e  higher dens i ty  of f u e l  and t h e  r e s u l t i n g  smaller dimen- 
s ions  of t h e  c r a f t  (see a l s o  Figure 12). Since t h e  dimensions of a l l  
sur faces  are r e l a t i v e l y  small i n  t h i s  case, t h e  e f f e c t  of s t r u c t u r a l  
weights mus t  a l s o  be s m a l l .  

I 

Figure 12. Space-Transporter S ize  Comparison 
f o r  Two Fuel Combinations 

I n  addition, it i s  g r a t i f y i n g  t o  note that t h e  region i n  which t h e  
curves r ise s t eep ly  can, i n  a l l  probabi l i ty ,  be neglected. It can be 
seen t h a t  t h e  percentage load carrying c a p a b i l i t y  of t h e  supplementary 
sur faces  i s  q u i t e  l a r g e  i n  t h e  e n t i r e  region; it genera l ly  exceeds 50 pc 
cent. This demonstrates t he  b e n e f i c i a l  e f f e c t  of t h e  high dens i ty  of t l  
F ~ / N z H ~  f u e l  combination on t h e  tank  s i z e  and, therefore ,  on t h e  e n t i r e  

concept of t h e  space-transporter. Also, no p a r t i c u l a r  d i f f i c u l t i e s  can 
be an t i c ipa t ed  wi th  regard t o  s t a b i l i t y  and s t e e r a b i l i t y  of t h e  t r a n s -  
p o r t e r  because of t h e  l a rge  s i z e  of t h e  supplementary l i f t i n g  surfaces.  
Consequently, t h e  parameter determining t h e  s i z e  of t h e  supplementary 
surfaces could very w e l l  be t h e  landing speed i n  t h i s  case. 

For comparison purposes, Figure 12 shows two space-transporters de. 
signed t o  ca r ry  a 500-kg payload, with one t r anspor t e r  using t h e  02/H2 

f u e l  combination mixed i n  a 7:l r a t i o ,  and t h e  o the r  using t h e  F2/!2H4-7 
I _  I -  I 
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f u e l  combination mixed i n  a 2.2:l r a t i o .  sions,  t h e  s p e c i f i c  

s t r u c t u r a l  weight of t h e  fuselage i s  10 kg/m and t h a t  of the supplemen- 

t a r y  l i f t i n g  surfaces  i s  12.75 kg/m2 of t h e  wet ted  surface. 
t a r y  l i f t i n g  surface of 30 percent w a s  assumed f o r  t h e  02/H2 version and 

a landing speed of 290 km/hr f o r  t h e  F2/N$I4 powered version. 

ing weights f o r  t h e  two c r a f t  are 83 tons  and 50 tons respect ively.  
i s  c l e a r  t h a t  t he  space-transporter powered by F2/N2H4 is ,  as should have 

been expected, not only smaller i n  s i z e  than i t s  02/H2 counterpart ,  b u t ,  

i n  s p i t e  of t h e  smaller spec i f i c  impulse which it can produce, s t i l l  has 
a lower s t a r t i n g  weight. 
r a t i o ,  t h e  low s p e c i f i c  weight of t h e  02/H2 combination i s  a subs t an t i a l  
disadvantage i n  t h i s  case. 

2 

A supplemen; 

The start- 

It 

' 

It i s  obvious t h a t  desp i t e  t h e  7 : l m i x t u r e  

Although the  F2/N2H4 f u e l  combination i s  superior  t o  t h e  02/H2 combi- 

na t ion  as far as t h e  weight, s ize ,  and, probably, cons t ruc t iona l  d i f f i c u  
t i es  are concerned, t h e r e  i s  one f a c t o r  t h a t  speaks s t rongly i n  favor  of 
t h e  la t ter  f u e l  combination--the comparative cos t s  of f u e l  elements. If 
one t akes  the  previously l i s t e d  s t a r t i n g  weights, f u e l  combinations, and 
mixture r a t i o s  and assumes t h e  following cos t s  of f u e l  elements, t h e  r e -  
s u l t i n g  f u e l  cos t  per  launching f o r  t h e  02/H2 version i s  DM 4,800, while 

t h e  cos t  for t he  F2/N$I4 vers ion i s  DM 304,000: 

02 0.16 DM/kg 

H2 4 DM/kg 

F2 8 DM/kg 

2 DM/kg. 

Thus, t h e  advantage of t h e  02/H2 combination i s  an economic one. Howeve 

t m u s t  be kept  i n  mind t h a t  t h e  air frame cost,  t h e  development cos ts ,  
and t h e  launching cos t s  play an important r o l e  i n  the  t o t a l  cos t  of t h e  
device and should be lower for t h e  smaller c r a f t .  
known how t h e  t o t a l  cos t s  per launching of t h e  two versions compare. 
problem i s  present ly  under scrut iny.  - 

It i s  not  present ly  
Th 

It w a s  previously emphasized t h a t  t?he s t a r t i n g  weight increases  w i t  
se  of t h e  payload weight. Ou ns  show ^ -  t h a t ,  -~ r I x ~ __-I 

I 

I 
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i a l l y ,  an increase  i n  t h e  payload weight beyond f 
500 kg produces an increase  of t h e  payload/s ta r t ing  weight r a t i o .  This 
i s  e a s i l y  explained by t h e  f a c t  t h a t  t h e  payload comprises only a s m a l l  
p a r t  of t h e  t o t a l  weight car r ied  by t h e  space-transporter.  
t a i n  payload weight which, depending on t h e  se lec ted  configuration f o r  
t h e  c r a f t ,  does not necessa r i ly  have t o  be very la rge ,  t h e  s t a r t i n g  t 

weight grows more r ap id ly  than  t h e  payload weight. This rapid growth of  ’ 
of t h e  s t a r t i n g  weight i s  caused by t h e  r ap id ly  growing s t r eng th  requi re -  
ments d i c t a t ed ,  i n  tu rn ,  by t h e  increase  i n  s i z e  of t h e  c r a f t .  A s  a re- 
s u l t  of t h i s ,  t h e  payload/s ta r t ing  weight r a t i o  tends t o  decrease again. 

Above a cer- 

R e s u l t s  of similar nature can be found i n  American sources. P a r t i c -  
This diagram shows ular a t t e n t i o n  i s  ca l l ed  t o  t h e  diagram i n  Figure 13. 

t h e  q u a l i t a t i v e  r e l a t ionsh ip  between t h e  payload and s t a r t i n g  weight f o r  
v e r t i c a l l y  and ho r i zon ta l ly  launched vehic les  without giving any quanti-  
t a t ive  d a t a  (Ref. 1). Both versions represented i n  Figure 13 land i n  a 
hor izonta l  posit ion.  
s t a r t i n g  weight r a t i o  i s  t o  be expected i n i t i a l l y  and t h a t ,  afterwards, 
t h e  s t a r t i n g  weight begins t o  s t rongly  increase  u n t i l  a maximum payload 
i s  reached. Furthermore, it i s  very i n t e r e s t i n g  t o  note t h a t ,  according 
to t h i s  source, a ho r i zon ta l ly  launched space-transporter carrying a 
small payload and aided by aerodynamic l i f t  requi res  smaller s t a r t i n g  
weights than t h e  v e r t i c a l l y  launched c r a f t .  I n  o the r  words, t h e  escape 
ve loc i ty  of a ho r i zon ta l ly  launched space-transporter i s  smaller than  
t h a t  of t h e  v e r t i c a l l y  launched one--a resul t  which already had been dem- 
ons t ra ted  by Figure 9. Unfortunately, Figure 13 gives only a q u a l i t a t i v $  i 

re la t ionship .  
source i s  t h e  mention of t h e  range of payload weights i n  which t h e  two ’ 
curves of Figure 13 i n t e r s e c t ;  namely, 13.5 t o  18 tons  f o r  two-stage 
rocke ts  with both s t ages  dr iven  by l i qu id  propel lan ts .  If one assumes 
t h a t  t h e  payload percentage of a two-stage rocke t  i s  i n  t h e  order of 3 to 
4 t imes t h a t  f o r  a one-stage rocket,  t h e  maximua payload obtained from 
t h i s  diagram coincides with t h e  values  w e  ca lcu la ted  throughout t h e  en- 
t i r e  range. 

The two curves show t h a t  a r ise i n  t h e  payload/ 

The only c lue  of a quan t i t a t ive  nature furnished by t h e  

An attempt had been made to l i s t  t h e  reasons supporting t h e  d e v e l o p  
ment of a reusable European space-transporter.  Even though no f i n a l  con; 
e lus ions  with regard t o  t h e  system t o  be se lec ted  can be made now, some ’ 

very i n t e r e s t i n g  results have been obtained. O f  p a r t i c u l a r  i n t e r e s t  a r e ,  
.the results obtained from inves t iga t ions  ca r r i ed  out wi th in  t h e  framework 
Df t h e  National Spaceflight Program, which show t h a t  t h e  o r b i t a l  mass caq j 

be made l a r g e r  by employing a ho r i zon ta l ly  launched vehicle which i s  
aided by aerodynamic l i fe .  Diagrams, from which t h e  s t a r t i n g  weight and, 
surface loading can be read f o r  various s p e c i f i c  s t r u c t u r a l  weights, have 
been constructed f o r  a one-stage space-transporter wi th  a launching aid.  
and powered by 02/H2 or F /N H f u e l  combinations. I n  t h i s  connection, 

It w a s  found t h a t  t h e  s i z e  of t h e  l i f t i n g  sur face  i s  

I .. 

2 2 4  
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S t a r t i n g  Weight 

Figure 13. Payload as a Function of S t a r t i n g  Weight 
for V e r t i c a l  and Horizontal Launching 

s t a b i l i t y  considerations f o r  t h e  02/H2 vers ion  and by landing speed con. 

s ide ra t ions  f o r  t h e  F2/N2Hb version. Additional in tens ive  research  i s  

necessary before one of t h e  two versions can be selected.  The various 
fue l  combinations have been considered a t  length  i n  t h i s  repor t .  Calcu- 
l a t i o n s  with regard t o  the  admissible f l i g h t  pa th  mus t  be performed, anc 
stress requirements f o r  t h e  various phases of f l i g h t ,  p a r t i c u l a r l y  thosf 
occurring during reentry,  m u s t  be considered i n  d e t a i l  so t h a t  dependab: 
d a t a  for research, t e s t i n g  and construction w i l l  be available. The far 
reaching consequences of making a s ing le  s e l e c t i o n  make it imperative t c  
continue with research i n  a l l  r e l a t e d  areas before t h e  most favorable 
concept can be found. For example, t h e  experimental l abo ra to r i e s  and dt 
s ign  o f f i c e s  are present ly  attempting t o  determine whether t h e  required 
s p e c i f i c  s t r u c t u r a l  weights can be rea l ized ,  whether t h e  proposed self- 
supporting tank with temperature pro tec t ion  c o n s t i t u t e s  a t r u l y  advan- 
tageous solution, and which configuration of t h e  system i s  t h e  best .  

t 

It has been attempted here t o  descr ibe  only those few i so l a t ed  pro1 
‘ l e m s  of t h e  system ana lys i s  which appear t o  be of p a r t i c u l a r  importance, 
)To r e a l i z e  a p ro jec t  of such magnitude, many more problems, such as guic 
ance, telemetry, navigation, equipment, e t c . ,  m u s t  be solved. A d i scus-  
s ion  of any of t hese  spec ia l  problems would be  beyond t h e  scope of t h i s  
r epor t .  

x 
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